Temporal downscaling of irradiance data via Hidden Markov Models on Wavelet coefficients: Application to California Solar Initiative data
نویسندگان
چکیده
منابع مشابه
Estimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models
In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...
متن کاملClimate change scenarios generated by using GCM outputs and statistical downscaling in an arid region
Two statistical downscaling models, the non-homogeneous hidden Markov model (NHMM) and the Statistical Down–Scaling Model (SDSM) were used to generate future scenarios of both mean and extremes in the Tarim River basin,which were based on nine combined scenarios including three general circulation models (GCMs) (CSIRO30, ECHAM5,and GFDL21) predictor sets and three special report on emission sce...
متن کاملSimplified wavelet-domain hidden Markov models using contexts
Wavelet-domain Hidden Markov Models (HMMs) are a potent new tool for modeling the statistical properties of wavelet transforms. In addition to characterizing the statistics of individual wavelet coefficients, HMMs capture the salient interactions between wavelet coefficients. However, as we model an increasing number of wavelet coefficient interactions, HMM-based signal processing becomes incre...
متن کاملStochastic wavelet-based image modeling using factor graphs and its application to denoising
In this work, we introduce a hidden Markov field model for wavelet image coefficients within a subband and apply it to the image denoising problem. Specifically, we propose to model wavelet image coefficients within subbands as Gaussian random variables with parameters determined by the underlying hidden Markov process. Our model is inspired by the recent Estimation-Quantization (EQ) image code...
متن کاملWavelet-based denoising using hidden Markov models
Hidden Markov models have been used in a wide variety of waveletbased statistical signal processing applications. Typically, Gaussian mixture distributions are used to model the wavelet coefficients and the correlation between the magnitudes of the wavelet coefficients within each scale and/or across the scales is captured by a Markov tree imposed on the (hidden) states of the mixture. This pap...
متن کامل